First recorded predation of a Mediterranean Centipede, Scolopendra cingulata Latreille, 1789, by a North African Ocellated Lizard, *Timon pater* (Lataste, 1880), in Chréa National Park, Algeria

Mustapha Aroudj^{1,*}, Youcef Hamidi², Mohamed Abbad², Yamina Mouas², Mostefa Benacherine³, and Cherifa Chaouia²

Predation events documented across species' ranges provide critical insights into the biogeographical mechanisms underlying interspecific interactions (Cotoras and Vallejos, 2021). Numerous instances of predation by herpetofauna on a wide range of prev species have been reported from various habitats (Sloggett 2012; Roudil et al., 2024; Khashab and Jablonski 2025; Mesonero et al., 2025).

The North African Ocellated Lizard, Timon pater (Lataste, 1880), is a diurnal lacertid endemic to the Maghreb, distributed across northern Morocco, Algeria, and Tunisia (Rouag et al., 2006; Arnold et al., 2007; Mamou et al., 2014; Saoudi et al., 2017; Nouira et al., 2022). Initially considered a geographic form of Lacerta lepida (now Timon lepidus), it was later elevated to species rank based on morphological, karyological, and molecular evidence confirming its genetic distinctiveness (Bischoff, 1982; Paulo et al., 2008).

Trophically, lacertids are recognised for their opportunistic and generalist feeding behaviour with a diet largely composed of terrestrial invertebrates, predominantly insects (Arnold, 1987; Pérez-Mellado

and Corti, 1993; Lo Cascio and Capula, 2011). However, their trophic ecology is characterised by notable plasticity, with prey selection influenced by numerous environmental and biological factors (Carretero, 2004). In *Timon pater*, the diet is dominated by arthropods, beetles (Coleoptera), (Orthoptera), and ants (Formicidae), but also includes molluses, especially gastropods (Rouag et al., 2006). Nevertheless, regional data, such as those from the Aurès Mountains (Mount Chelia), indicate a marked dominance of beetles in the diet composition (Saoudi et al., 2017). Despite these contributions, knowledge on the feeding ecology of T. pater remains fragmented, and a detailed characterisation of its trophic preferences is still lacking.

The Giant Centipede, Scolopendra cingulata Latreille, 1789, commonly referred to as the Mediterranean Centipede, is systematically classified within the order Scolopendromorpha and the family Scolopendridae (Haupt, 1993). It is the largest centipede species occurring in Europe and the most widespread representative of its genus (Oeyen et al., 2014), typically associated with Mediterranean environments and humid habitats (Abrous-Kherbouche, 1996; Lewis, 2010). This myriapod is easily recognised by its powerful forcipules and its highly variable, often striking colouration, with body tones ranging from brownish-yellow to olive, often marked with darker transverse bands (Haupt, 1993). In addition to its ecological role as an active nocturnal predator, S. cingulata is medically significant due to its venom, which can inflict painful bites. Although severe envenomation remains rare, some cases have resulted in necrotising fasciitis or neurological complications (Serinken et al., 2005; Voigtländer, 2011; Yao et al., 2013). Furthermore, recent studies have highlighted the biomedical potential of its venom, including the discovery of bioactive peptides with potent analgesic,

© 2025 by Herpetology Notes. Open Access by CC BY-NC-ND 4.0.

¹ Medicinal and Aromatic Plants Research Laboratory, Department of Biotechnology and Agro-Ecology, Faculty of Nature and Life Sciences, University of Blida 1, 09000 Blida, Algeria.

² Plant Production Biotechnology Laboratory, Department of Biotechnology and Agro-Ecology, Faculty of Nature and Life Sciences, University of Blida 1, 09000 Blida, Algeria.

³ Natural Resources and Management of Sensitive Environments Laboratory, Department of Nature and Life Sciences, Larbi Ben M'hidi, University Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria.

^{*} Corresponding author. Email: aroudj_mustapha@univ-blida.dz

cytotoxic, and anticoagulant properties (Kong et al., 2013).

On 30 April 2025, at approximately 12:25 h, we observe a lizard predating on a centipede in the Magtaa Lazrag area (36.4702°N, 3.0086°E; elevation 1200 m), located within Chréa National Park (Fig. 1). This park is one of the main protected areas in northern Algeria and has been part of the UNESCO Man and the Biosphere Programme since 2002. It represents a site of high ecological value, hosting a remarkable diversity of Mediterranean forest landscapes and habitats, making it an ideal location for observing herpetofauna. The predation event between the reptile and its prey was documented photographically using a Nikon Coolpix P1000 camera, during an educational field outing conducted near an agricultural area, along the banks of a natural wadi used for irrigation. The reptile was identified as the North African Ocellated Lizard (Timon pater) based on the full set of diagnostic morphological features characteristic of the species (Fig. 2A). This identification is further supported by the known ecological requirements of T. pater, which exhibits a marked preference for mountainous and high-altitude environments, in agreement with previous records (Schleich et al., 1996; Bouam et al., 2017).

The prey item was identified as the Giant Centipede (*Scolopendra cingulate*) based on its distinctive external morphology, with an estimated total body length of approximately 12 cm (Fig. 2B). It was initially observed moving on the rocky substrate. Shortly thereafter, the lizard suddenly emerged to capture it, seizing the prey by the anterior end of its body. The attack was followed by a series of vigorous shaking movements before the complete ingestion of the prey, starting with the head. The entire predation sequence lasted approximately 13 minutes (Fig. 3).

This observation is particularly noteworthy given that *Scolopendra* centipedes possess venomous forcipules capable of delivering painful and potentially harmful envenomation in humans and other animals (Bouchard et al., 2004; Yildiz et al., 2006; Malta et al., 2008; De Haro, 2009). According to these authors, the venom secreted by these myriapods can induce intense local reactions such as inflammation, oedema, and occasionally tissue necrosis at the bite site. Despite this, the reptile was able to handle and consume the prey without any visible adverse effects, suggesting either an evolved resistance or behavioural adaptations to avoid envenomation during capture and ingestion.

The observed predation on S. cingulata may thus

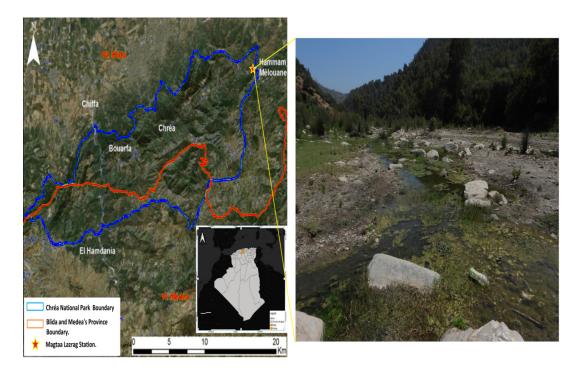


Figure 1. Geographical location of the Magtaa Lazrag study area in Chréa National Park.

Figure 2. Field observations of the North African Ocellated Lizard (a) basking on tree branches and a Giant Centipede (b) on rocky substrate. Photos by Mustapha Aroudj.

represent a rare or underreported trophic interaction, warranting further investigation into the chemical ecology of predator-prey dynamics involving venomous arthropods and their reptilian predators. Further

ecological and dietary investigations are therefore recommended to better define the trophic niche of this species and to assess its functional role within North African ecosystems.

Acknowledgments. We express our sincere appreciation to the faculty of the Master's Program in "Agroecological Production Systems" for organising the educational field excursion, which enabled a direct observation of the studied event. We are equally grateful to all the student cohort and the forest rangers for their logistical support and active participation during the field activities.

References

Abrous-Kherbouche, O. (1996): Étude systématique et écologique des myriapodes dans le parc National de Chréa (Atlas blidéen), Algérie [Systematic and ecological study of myriapods in the Chréa National Park (Blidean Atlas), Algeria]. Mémoires du Muséum national d'histoire naturelle 169: 175–186.

Arnold, E.N. (1987): Resource partition among lacertid lizards in southern Europe. Journal of Zoology 1(4): 739–782.

Arnold, E.N., Arribas, O., Carranza, S. (2007): Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata:

Figure 3. Capture (1) and ingestion (2/3) sequences of the Mediterranean Centipede by the North African Ocellated Lizard. Photos by Mustapha Aroudj.

988 Mustapha Aroudj et al.

Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa 1430: 1–86.

- Bischoff, W. (1982): Zur Frage des Taxonomischen Stellung Europaischer und Nordwestafrikanischer Perleidechsen (Sauria, Lacertidae, *Lacerta lepida* groppe) [On the Question of the Taxonomic Status of European and Northwest African Ocellated Lizards (Sauria, Lacertidae, *Lacerta lepida* Group)]. Amphibia-Reptilia (2): 357–367.
- Bouam, I., Necer, A., Saoudi, M. (2017): Highest altitudinal record of the ocellated lizard *Timon pater* (Lataste, 1880) (Squamata: Lacertidae). Herpetology Notes: 10: 101–102.
- Bouchard, N.C., Chan, G.M., Hoffman, R.S. (2004): Vietnamese centipede envenomation. Veterinary and human toxicology 46(6): 312–313.
- Carretero, M.A. (2004): From set menu to a la carte. Linking issues in trophic ecology of Mediterranean lizards. Italian Journal of Zoology 71: 121–133.
- Cotoras, D.D., Vallejos, J.G. (2021): Wandering spider (Cupiennius sp.) predation on the emerald glass frog (Espadarana prosoblepon) in a montane rainforest of southwestern Costa Rica. Herpetology Notes 14: 667–669.
- De Haro, L. (2009): Animaux venimeux terrestres [Venomous land animals]. EMC. Pathologie professionnelle et de l'environnement 4: 1–17.
- Haupt, J. (1993): Guide des Mille-pattes, Arachnides et Insectes de la région Méditerranéenne [Guide of Centipedes, Arachnids, and Insects of the Mediterranean Region]. Delachaux et Niestlé, Paris, France, 356 p.
- Khashab, R., Jablonski, D. (2025): Attempted predation of the Levant Waterfrog, *Pelophylax ridibundus bedriagae* (Camerano, 1882), on the Red-bellied Tilapia, Coptodon zillii (Gervais, 1848). Herpetology Notes 18: 43–45.
- Kong, Y., Hui, J., Shao, Y., Huang, S., Chen, H., Wei, J. (2013): Cytotoxic and anticoagulant peptide from Scolopendra subspinipes mutilans venom. African Journal Pharmacy Pharmacology 7: 2238–2245.
- Lo Cascio, P., Capula, M. (2011): Does diet in lacertid lizards reflect prey availability? Evidence for selective predation in the Aeolian wall lizard, *Podarcis raffonei* (Mertens, 1952) (Reptilia, Lacertidae). Biodiversity Journal 2(2): 89–96.
- Lewis, J.G.E. (2010): A key and annotated list of the Scolopendra species of the Old World with a reappraisal of *Arthrorhabdus* (Chilopoda: Scolopendromorpha: Scolopendridae). International Journal of Myriapodology 3: 83–122.
- Malta, M.B., Lira, M.S., Soares, S.L., Rocha, G.C., Knysak, I., Martins, R., et al. (2008): Toxic activities of Brazilian centipede venoms. Toxicon 52: 255–263.
- Mamou, R., Boissinot, A., Bensidehoum, M., Amroun, M., Marniche, F. (2014): Inventaire de l'herpétofaune du sud de la kabylie (Bouira et Bordj Bou Arreridj) Algérie [Inventory of the Herpetofauna of Southern Kabylie (Bouira and Bordj Bou Arréridj), Algeria]. Revue Ivoirienne des Sciences et Technologie 23: 259–273.
- Mesonero, N., Bentley, A.G., Sánchez, H., Maxwell-Howard, J. (2025): Predation of giant earthworms by the Black Groundsnake, Atractus elaps (Günther, 1858), in the Upper Amazon Basin of Ecuador. Herpetology Notes 18: 111–113.
- Nouira, S., Blanc, C.P., Crochet, P.A., Frétey, T., Geniez, P., Ineich,

- I., et al. (2022): Nouvelle liste taxinomique de l'herpétofaune de Tunisie [New taxonomic checklist of the herpetofauna in Tunisia]. Bulletin de la Société Herpétologique de France (180): 5–26.
- Oeyen, J.P., Funke, S., Böhme, W., Wesener, T. (2014): The Evolutionary History of the Rediscovered Austrian Population of the Giant Centipede Scolopendra cingulata Latreille 1829 (Chilopoda, Scolopendromorpha). PLoS ONE 9(9): e108650.
- Paulo, O.S., Pinheiro, J., Miraldo, A., Bruford, M. W., Jordan, W.C., Nichols, R.A. (2008): The role of vicariance vs. dispersal in shaping genetic patterns in ocellated lizard species in the western Mediterranean. Molecular Ecology 17(6): 1535–1551.
- Pérez Mellado, V., Corti, C. (1993): Dietary adaptations and herbivory in lacertid lizards of the genus *Podarcis* from western Mediterranean islands (Reptilia: Sauria). Bonner Zoologische Beitrage 44: 193–220.
- Rouag, R., Berrahma, I., Luiselli, L. (2006): Food habits and daily activity patterns of the North African ocellated lizard *Timon pater* from northeastern Algeria. Journal of Natural History 40(21-22): 1369–1379.
- Roudil, A., Zdunek, P., Coquand, P., Maran, J., Deso, G. (2024): Predation by a Mediterranean House Gecko, *Hemidactylus turcicus* (Linnaeus, 1758) on a European dwarf mantis, *Ameles spallanzania* (Rossi, 1792) in France with an emphasis on the gecko's diet. Russian Journal of Herpetology 31(5): 307–314.
- Saoudi, M., Necer, A., Bouam, I., Khelfaoui, F., Saadi, O. (2017): Daily activity, biometry and diet of the North African ocellated lizard *Timon pater* in Mount Chélia, north-eastern Algeria. African Journal of Herpetology 66: 1–11.
- Schleich, H.H., Kästle, W., Kabisch, K. (1996): Amphibians and Reptiles of North Africa: Biology. Systematics, Field Guide Koeltz Scientific Books. Koenigstein, Germany. 630 p.
- Serinken, M., Erdur, B., Sener, S., Kabay, B., Cevik, A. (2005): A case of mortal necrotizing fasciitis of the Trunk resulting from a centipede (*Scolopendra moritans*) Bite. Internet Journal of Emergency Medicine 2: 1.
- Sloggett, J.J. (2012): Predation of ladybird beetles (Coleoptera: Coccinellidae) by amphibians. Insects 3(3): 653–667.
- Voigtländer, K. (2011): Chilopoda-Ecology. Treatise on Zoology - Anatomy, Taxonomy, Biology, The Myriapoda 1: 309–326.
- Yang, S., Xiao, Y., Kang, D., Liu, J., Li, Y., Undheim, E.A.B., et al. (2013): Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proceeding of National Academy Sciences of the USA 110: 17534–17539.
- Yao, X., Dong. Q., Chen, Y., Feng, Z., Li, Y. (2013): Acute disseminated encephalomyelitis following biting by a scolopendra subspinipes mutilans. Clinical Toxicology 51: 519–520.
- Yildiz, A., Biceroglu, S., Yakut, N., Bilir, C., Akdemir, R., Akilli, A. (2006): Acute myocardial infarction in a young man caused by centipede sting. Emergency Medicine Journal 23(4): e30–e30.