Bite, shriek, or intimidate: defensive behaviours of the Apatani Horned Toad, *Xenophrys apatani* Saikia et al., 2024, and the Bicoloured Frog, *Clinotarsus curtipes* (Jerdon, 1853), from India

Tage Tajo¹, A.N. Dikshit Akalabya Sarmah¹, Radhakrishna Upadhyaya K.¹, Sonali Garg^{1,2}, and S.D. Biju^{1,*}

Anurans exhibit a diverse array of defensive mechanisms that largely serves to mitigate predation risk by aiding to avoid detection, prevent attack by predators, or counterattack. Depending upon the criteria used for interpretation and classification, between 12 and 30 distinct anti-predator mechanisms have been documented in the literature to date (e.g., Dodd, 1976; Duellman and Trueb, 1994; Toledo et al., 2011; Lourenço-de-Moraes et al., 2016; Ferreira et al., 2019). Defensive mechanisms employed by different species are influenced by environmental conditions, the types of threats encountered, and their evolutionary histories. These mechanisms could range from simple, singular strategies to more complex ones that comprise two or more mechanisms to reduce the chances of predation and increase the probability of survivability (Wells, 2007; Toledo et al., 2011).

Various defensive or anti-predator mechanisms have been previously documented in Asian Horned Frogs (Family Megophryidae), including camouflage, aposematism, body inflation, aggressive biting, and warning sounds (e.g., Zainudin et al., 2018; Ferreira et al., 2019; Pradhan and Pradhan, 2021). Similarly, among members of the True Frogs (Family Ranidae) a diverse array of anti-predator mechanisms has been reported previously, including camouflage, aposematism, posture, escape, warning sounds, cloacal discharge, secretions, aggression, and distress calls (e.g., Choi et al., 1999; Toledo and Haddad, 2009; Toledo et al., 2011, 2015; Ferreira et al., 2019). Even though India harbours

The observations were made during field studies conducted in two biodiversity hotspots of India. The study site for Xenophrys apatani was Pange, Tale Valley Wildlife Sanctuary, Ziro, Lower Subansiri District, Arunachal Pradesh State (27.5466°N, 93.8949°E; elevation 1907 m), which lies in the Himalaya biodiversity hotspot. The observations of Clinotarsus curtipes were made at Singappara, Siruvani, Palakkad District, Kerala State (10.9794°N, 76.615°E; elevation 856 m), situated in the Western Ghats biodiversity hotspot. The defensive behaviours were recorded fortuitously during both diurnal and nocturnal searches. To assess the consistency of these behaviours, we simulated a threat multiple times using a small twig or a stick. All observations and photographs were captured in the wild.

Defensive vocalisations were recorded using a Tascam DR-40X portable digital audio recorder (44.1 kHz sampling rate, 16-bit resolution) connected to a Sennheiser MKE 600 unidirectional microphone that was positioned towards the calling animal at a distance of 10 cm. Input levels were pre-adjusted to prevent amplitude clipping, ensuring a consistent signal-to-noise ratio across all recordings. Five temporal properties (call duration, call rise time, call fall time, pulses per call, pulse rate) and one spectral property (overall dominant frequency) were measured using

one of the highest levels of frog diversity and has seen a growing interest in amphibian research over the past two decades (Biju and Bossuyt, 2003; Vijaykumar et al., 2014; Garg and Biju, 2019), studies on defensive behaviour are relatively scarce (e.g., Kanagavel and Tapley, 2013; Jena and Palita, 2020; Khate et al., 2021). This highlights a significant gap in the current understanding of the range of natural behaviours in Indian frog species and underscores the need for further research. Here, we report defensive behaviours of the megophryid *Xenophrys apatani* Saikia et al., 2024 and the ranid *Clinotarsus curtipes* (Jerdon, 1853).

¹ Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi 110 007, India.

² Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA.

^{*} Corresponding author. E-mail: sdbiju@es.du.ac.in

^{© 2025} by Herpetology Notes. Open Access by CC BY-NC-ND 4.0.

1000 Tage Tajo et al.

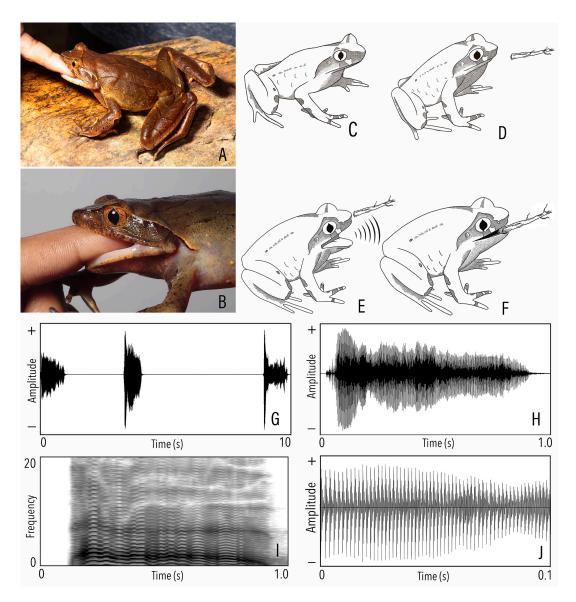
Raven Pro v1.6.5 software (K. Lisa Yang Center for Conservation Bioacoustics, 2024) following Charif et al. (2010). Measurements were carried out following the definitions, terminologies, and methods of Garg et al. (2021). Oscillograms showing the amplitude versus time waveform were prepared for visual representation of the calls. The overall dominant frequency was obtained using Raven's spectrogram function (1024-point fast Fourier transformation, Hann window, 50% overlap, 43.1 Hz resolution). Spectrograms for the calls were prepared to match the time frame of the oscillograms.

Results and Discussion

Xenophrys apatani. The species is endemic to Arunachal Pradesh and currently known only from the vicinity of its type locality (Saikia et al., 2024). Our observations were made of individuals encountered between 2022 and 2024 near the forest camp in Pange, Tale Valley Wildlife Sanctuary, at the type locality of this species.

When approached initially, the individual remained immobile and relied on its cryptic body colouration that resembles the dry leaf litter of its natural habitat. Camouflage and immobility are the first and most common forms of defence among anurans (e.g., Toledo et al., 2011; Lourenço-de-Moraes et al., 2016; Ferreira et al., 2019; Barnett et al., 2021). Both of these strategies combined enable these animals to escape detection by predators that rely on the movement of prey to find them (Bertoluci et al., 2007).

To observe any additional defensive behaviours, we exposed the animal to an artificial threat by using a twig brought into close proximity of the animal. In response, the animal raised itself and inflated its body (Fig. 1D). This type of response was previously reported for *Bufo crucifer, Leptodactylus stenoderma* and *Rhinella major* (Toledo, 2004; Well, 2007; Pedroso-Santos and Costa-Campos, 2021). This was followed by mouth gaping, similar to the response observed by Guerra et al. (2018) in *Boana raniceps* (Cope, 1862). The animal maintained this position for about 10 s while the twig was kept motionless.


On touching the animal's snout with the twig, the animal initially produced a warning call (as defined by Toledo et al., 2015) and it subsequently showed aggression by biting the twig while maintaining its inflated posture (Fig. 1E–F). The bite force was of considerable strength as evident from our effort to tug the twig from the mouth of the animal. The animal

returned to its pre-encounter posture after it was left undisturbed for about 20 s. This sequence of behaviour was observed consistently during four additional trials with the same sequence and stimulus, after which the frog seemed to habituate and did not respond.

While we attempted to collect the frog for photography it exhibited the same body inflation and mouth-gaping behaviour while simultaneously emitting a piercing distress call (as defined by Toledo et al., 2015). It further exhibited aggression by biting the finger of the handler and kept the mouth closed until the finger was pried out of its mouth (Fig. 1A). The distress call was emitted each time the animal was picked up but there was no consistency in the timing of the calls. Initially, the frog emitted the call as soon as it was picked up but subsequently it shrieked intermittently even when it was gently steered or handled for photography. The same defensive behavioural sequence was also observed in a female of the species during collection and photography (Fig. 1B).

For anurans encountering danger, escape is the most helpful defence but biting and distress calling behaviour are generally displayed when a frog comes in close contact with an aggressor or a predator (Lourençode-Moraes et al., 2016; Guerra et al., 2018). In close contact encounters, biting is one of the most aggressive behaviours observed in frogs, which has been reported in at least 30 species (e.g., Toledo et al., 2011; Lourençode-Moraes et al., 2016; Ferreira et al., 2019; Pradhan and Pradhan, 2021). In the Family Megophryidae, biting behaviour has previously been reported only in Brachytarsophrys carinense (Boulenger, 1889) and one species in the genus Megophrys (Toledo et al., 2011). Gaping of the mouth and body inflation during distress calling or biting appear to be synergistic behaviours in many anuran species (Lourenco-de-Moraes et al.,


The intended function of distress calls is to scare away predators (Toledo et al., 2015). Even though distress calls have been reported in several frog species (e.g., Lourenco-de-Moraes et al., 2016; Guerra et al., 2018), they have previously not been reported in megophryid species. The male *Xenophrys apatani* produced a loud distress call (Fig. 1G–J) not unlike the screech of a cat. The vocalisations had a pulsatile temporal structure with a call duration of 1031.8 ms, rise time of 49.3 ms, and fall time of 982.4 ms. The calls had 301–805 pulses delivered at a pulse rate of 495.7 \pm 37 pulses/s. The calls had a mean dominant frequency of 3.78 ± 0.17 kHz (Table 1). As these vocalisations were produced by

Figure 1. Defensive behaviour in *Xenophrys apatani*. (A) Biting by a female. (B) Biting by a male. (C–F) Illustrations showing the sequence of defensive behaviours when a threat stimulus is presented. (C) Normal posture. (D) Body inflation and raising of the head. (E) Mouth-gaping and production of a 'warning call'. (F) Biting. (G–J) Waveform and spectrogram of a 'distress call'. (G) Oscillogram for a 10-s call segment. (H) Oscillogram for 1.0-s call segment. (I) Spectrogram for a 1.0-s call segment. (J) Oscillogram for a 0.1-s call segment. Photos by S.D. Biju.

	Mean	SD	Minimum	Maximum
Call duration (ms)	1031.8	552.0	571.3	1821.1
Call rise time (ms)	49.3	37.1	6.6	97.2
Call fall time (ms)	982.4	0.5	0.6	1.7
Pulses per call (#)	440	322-728	301	805
Pulse rate (pulses/s)	495.7	37.0	442.0	526.8
Dominant frequency (kHz)	3.80	0.17	3.62	3.96

Table 1. Acoustic properties of distress calls emitted by *Xenophrys apatani*. For each characteristic, we report mean \pm standard deviation and the range. Because pulses are indivisible units, we report medians and interquartile ranges based on individual means in place of means and standard deviations.

Figure 2. Body-raising behaviour in *Clinotarsus curtipes*. (A) Crouching down to a lower-than-normal sitting posture. (B) Headraising with support of the forelimbs. (C) Initial raising of the hind body with support of both fore- and hind limbs. (D) Fully raised body with forelimbs vertically stretched and hind limbs nearly so. (E) Return to the normal sitting posture after about 8 s. (F) Raising of the complete body once more within 15 s. Photos by S.D. Biju.

the animal with its mouth agape while being captured, and the vocalisations exhibited dense and multiple harmonics, we classify this vocalisation as a distress call in accordance with Toledo et al. (2015) and Köhler et al. (2017).

Clinotarsus curtipes. This ranid species is endemic to the Western Ghats of India and can be characterised by its highly contrasting dorsal and ventral body colouration. A pronounced 'body-elevation' or 'bodyraising' behaviour was incidentally observed when a male individual was gently being picked up during

daytime photography in the field. This was re-tested in the wild by using a small twig as a threat stimulus. The adult fully extended its fore- and hind limbs vertically, raising its body off the ground level while its eyes remained wide open. Three individuals of *C. curtipes* consistently exhibited this body-raising behaviour each time they received the stimulus to the back or the snout from a distance of ca. 30 cm. All individuals that exhibited this behaviour began by raising the body slowly and then repeated the posture more rapidly two to three times. This deimatic postural display exposed

the dark blackish-brown limbs and ventral body surfaces in contrast to the light-brown dorsal colouration, potentially to intimidate a perceived predator, and continued for about 10 s before the individual returned to its normal posture (Fig. 2). However, this behaviour was not exhibited by individuals in captivity.

To the best of our knowledge, this is the first report of a body-raising defensive behaviour for a ranid frog in India. This display could be assigned to the 'body elevation' with 'legs vertically stretched' category described by Toledo et al. (2011), which may function as a deceptive anti-predator mechanism by increasing the perceived body size of the individual in an attempt to avoid subjugation (Toledo et al., 2011; Ferreira et al., 2019). Within Ranidae, a similar defensive behaviour has been recorded for Lithobates areolatus (Baird & Girard, 1852), a species that fully extends all four limbs (Ferreira et al., 2019). This behaviour was also observed, albeit rarely, in Rana temporaria Linnaeus, 1758 and Pelophylax kl. esculentus (Kowalski et al., 2018). Such postural displays are commonly observed in many toxic frog species (Toledo et al., 2011). Although we do not have evidence for toxicity in C. curtipes, it was observed that individuals of this species produce a sticky secretion with foul odour when handled. Further investigations are required to understand the biochemical properties and function of these secretions.

Acknowledgments. We thank the Departments of Environment and Forests of Arunachal Pradesh and Kerala States, India, for research permits and logistical support, and the local forest department personnel and tribal communities for field support. This study was partly funded by grants from the Critical Ecosystem Partnership Fund, Conservation International, USA (Project 55918/ 2009) and the University of Delhi Faculty Research Programme, Institution of Eminence (Ref. No./IoE/2021/12/FRP, 2021-2022 and 2022-2023) to SDB. Additional financial support came from a Senior Research Fellowship from the Council for Scientific and Industrial Research, Government of India [CSIR File. No. 09/045(1749)/2019-EMR-IJ to TT, a Senior Research Fellowship from University Grants Commission, Government of India [UGC Ref. No. 3790/ (NET-DEC 2018)] to ANDAS, a PhD programme research fellowship from the University of Delhi to RUK, and research fellowships from the Council for Scientific and Industrial Research, Government of India [CSIR No. 9/45(1381)/2015-EMR-I, 09/045(1694)/2019-EMR-I] and a Biodiversity Postdoctoral Fellowship from the Museum of Comparative Zoology, Harvard University to SG during various periods of this study.

References

Barnett, J.B., Michalis, C., Scott-Samuel, N.E., Cuthill, I.C. (2021): Colour pattern variation forms local background matching

- camouflage in a leaf-mimicking toad. Journal of Evolutionary Biology **34**(10): 1531–1540.
- Bertoluci, J., Brassaloti, R.A., Sawakuchi, H.O., Ribeiro, J.W., Jr., Woehl, G., Jr. (2007): Defensive behaviour with stiff-legged posture in the Brazilian tree toads *Dendrophryniscus brevipollicatus* and *D. leucomystax* (Anura, Bufonidae). Alytes **25**(1–2): 38–44.
- Biju, S.D., Bossuyt, F. (2003): New frog family from India reveals an ancient biogeographical link with the Seychelles. Nature 425(6959): 711–714.
- Charif, R.A., Strickman, L.M., Waack, A.M. (2010): Raven Pro 1.4 User's Manual. Ithaca, New York, USA, Cornell Laboratory of Ornithology.
- Choi, I.H., Lee, S.H., Ricklefs, R.E. (1999): Effectiveness and ecological implications of anuran defenses against snake predators. Korean Journal of Biological Sciences 3(3): 247– 252.
- Dodd, C.K., Jr. (1976): A bibliography of anuran defensive mechanisms. Smithsonian Herpetological Information Service 37: 1–10.
- Duellman, W.E., Trueb, L. (1994): Biology of Amphibians. Baltimore, Maryland, USA, Johns Hopkins University Press.
- Ferreira, R.B., Lourenço-de-Moraes, R., Zocca, C., Duca, C., Beard, K.H., Brodie, E.D., Jr. (2019): Antipredator mechanisms of post-metamorphic anurans: a global database and classification system. Behavioral Ecology and Sociobiology 73: 1–21.
- Garg, S., Biju, S.D. (2019): New microhylid frog genus from Peninsular India with Southeast Asian affinity suggests multiple Cenozoic biotic exchanges between India and Eurasia. Scientific Reports 9(1): 1906.
- Garg, S., Suyesh, R., Das, S., Bee, M.A., Biju, S.D. (2021): An integrative approach to infer systematic relationships and define species groups in the shrub frog genus *Raorchestes*, with description of five new species from the Western Ghats, India. PeerJ 9: e10791.
- Guerra, V., Andrade, M.S., de Andrade, S.P., Ramalho, W.P., Bastos, R.P. (2018): Defensive behaviour of *Boana raniceps* (Anura: Hylidae). Herpetology Notes 11: 433–436.
- Jena, S.C., Palita, S.K. (2020): Habitat choice and arboreal behaviour of Sri Lankan Narrow-Mouthed Frog *Uperodon taprobanicus* (Parker, 1934) in mangroves of Bhitarkanika, Odisha, east coast of India. Proceedings of the Zoological Society 73(1): 99–107.
- K. Lisa Yang Center for Conservation Bioacoustics (2024): Raven Pro: Interactive Sound Analysis Software v1.6.4. Ithaca, New York, USA, The Cornell Lab of Ornithology.
- Kanagavel, A., Tapley, B. (2013): Defensive behaviour of Melanobatrachus indicus (Anura: Microhylidae) in the Western Ghats, India. Herpetology Notes 6: 607–608.
- Khate, D.D., Dahaki, S.P., Uike, P.A., Kumbhare, N.M. (2021): Death-feigning in a Red narrow-mouthed frog, *Microhyla rubra* (Boulenger 1882), in India Reptiles & Amphibians 28(1): 71–72.
- Köhler, J., Jansen, M., Rodriguez, A., Kok, P.J., Toledo, L.F., Emmrich, M., et al. (2017): The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice. Zootaxa 4251(1): 1–124.
- Kowalski, K., Sawościanik, O., Rychlik, L. (2018): Do bufonids

1004 Tage Tajo et al.

employ different anti-predator behaviors than ranids? Comparison among three European anurans. Copeia **106**(1): 120–129.

- Lourenço-de-Moraes, R., Ferreira, R.B., Mira-Mendes, C.V., Zocca, C.Z., Medeiros, T., Ruas, D.S., et al. (2016): Escalated antipredator mechanisms of two neotropical marsupial treefrogs. The Herpetological Journal 26(3): 237–244.
- Pedroso-Santos, F., Costa-Campos, C.E. (2021): Anti-predator behaviour of *Rhinella major* (Müller and Hellmich 1936), with insights into the *Rhinella granulosa* group. Herpetozoa 34: 195–200.
- Pradhan, A., Pradhan, A. (2021): Frog bites snake: a Robust Horned Frog (Megophrys robusta) bites a Himalayan Keelback (Herpetoreas platyceps) in Darjeeling, West Bengal, India. Reptiles & Amphibians 28(3): 499–501.
- Saikia, B., Sinha, B., Shabnam, A., Kharkongor, I.J., Dinesh, K.P. (2024): On a new species of *Xenophrys* (Anura: Megophryidae) from Tale Wildlife Sanctuary, Arunachal Pradesh, India with comments on the earlier erroneous report as *X. maosonensis* (Bourret, 1937). Records of the Zoological Survey of India 124(1S): 21–40.
- Toledo, L.F. (2004): Bufo cf. crucifer (Sapo Cururu). Defensive behavior. Herpetological Review 35(4): 370–371.
- Toledo, L.F., Haddad, C.F. (2009): Colors and some morphological traits as defensive mechanisms in anurans. International Journal of Zoology 2009(1): 910892.
- Toledo, L.F., Sazima, I., Haddad, C.F. (2011): Behavioural defences of anurans: an overview. Ethology Ecology & Evolution 23(1): 1–25.
- Toledo, L.F., Martins, I.A., Bruschi, D.P., Passos, M.A., Alexandre, C., Haddad, C.F.B. (2015): The anuran calling repertoire in the light of social context. Acta Ethologica 18: 87–99.
- Vijayakumar, S.P., Dinesh, K.P., Prabhu, M.V., Shanker, K. (2014): Lineage delimitation and description of nine new species of bush frogs (Anura: *Raorchestes*, Rhacophoridae) from the Western Ghats Escarpment. Zootaxa 3893(4): 451–488.
- Wells, K.D. (2007): The Ecology and Behavior of Amphibians. Chicago, Illinois, USA, University of Chicago Press.
- Zainudin, R., Deka, E.Q., Ojep, D.N.A., Su'ut, L., Puad, A.S.A., Jayasilan, M.A., Rasit, A.H. (2018): Histological description of the Bornean horned frog *Megophrys nasuta* (Amphibia: Anura: Megophryidae) skin structure from different body regions. Malaysian Applied Biology 47(1): 51–56.